语音智能评估模型是研究人员的重要工具,用于评估和改进语音处理模型。在本研究中,我们提出了INQSS,一种语音智能性评估模型,它使用频谱图和散射系数作为输入特征。此外,INQSS使用了一个多任务学习网络,其中质量分数可以指导语音可智能性评估的培训。由此产生的模型可以预测智能性分数,而且可以预测演讲的质量评分。实验结果证实,散射系数和质量分数是信息性的。此外,我们释放了TMHINT-QI,这是一个中国语音数据集,记录了清洁,嘈杂和增强的演讲的质量和可懂度分数。
translated by 谷歌翻译
Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.
translated by 谷歌翻译
我们提出了一种神经网络体系结构,用于糖尿病足溃疡和结肠镜检查息肉的医学图像分割。糖尿病足溃疡是由糖尿病的神经性和血管并发症引起的。为了提供适当的诊断和治疗,伤口护理专业人员需要从脚伤中提取准确的形态特征。使用计算机辅助系统是一种提取相关形态特征并分割病变的有前途的方法。我们提出了一个称为HardNet-DFU的卷积神经网络,通过增强主链并取代HardNet-MSEG的解码器,该网络是2021年的结肠镜检查息肉分割的SOTA。 DFU使用DFUC2022数据集并通过五倍的交叉验证,测试时间扩展等增加其稳健性。在DFUC2022的验证阶段,HardNet-DFUS达到0.7063平均骰子,并在所有参与者中排名第三。在DFUC2022的最终测试阶段,它达到了0.7287的平均骰子,并且是第一名。 HardNet-DFU还为结肠镜检查息肉分割任务提供出色的性能。它在著名的kvasir数据集上达到了0.924的平均骰子,比原始硬核MSEG提高了1.2 \%。这些代码可在https://github.com/kytimmylai/dfuc2022(用于糖尿病足溃疡细分)和https://github.com/yuwenlo/hardnet-dfus(用于结肠镜息肉分割)。
translated by 谷歌翻译
目的:本研究旨在开发一种基于深入的学习工具,可以用胸部射线照片检测和定位肺结节(CXRS)。我们预期提高CXR的解释效率,降低肺癌延迟诊断的可能性。材料和方法:我们从Nckuh数据库和VBD收集了CXR,一个开源医学图像数据集,作为我们的培训和验证数据。来自卫生部和福利部的许多CXRS(MoHW)数据库服务于我们的测试数据。我们建立了一个分割模型,以识别CXRS的肺区,并将它们切成16个补丁。医生通过单击修补程序标记CXR。然后使用这些标记的贴片来培训和微调深神经网络(DNN)模型,将贴片分类为正或负片。最后,我们用来自MoHW的CXR肺补丁来测试DNN模型。结果:我们的分割模型从整个CXR鉴定了肺部地区。地面真理与分割结果之间的联盟(iou)的交叉点数为0.9228。此外,我们的DNN模型达到了0.81的敏感性,0.82的特异性,0.82分,98例为0.869的菌射。对于其他27个困难的病例,敏感性为0.54,特异性0.494和Auroc 0.682。总体而言,我们获得了0.78,特异性0.79的敏感性,Auroc 0.837。结论:我们的两步工作流程与来自CXRS定位肺结节的敏感性和特异性的最先进的算法相当。值得注意的是,我们的工作流程为专家提供了一种有效的方式来标记数据,这对于相关的研究是有价值的,因为标记的医学图像数据的相对罕见。
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Compressed videos often exhibit visually annoying artifacts, known as Perceivable Encoding Artifacts (PEAs), which dramatically degrade video visual quality. Subjective and objective measures capable of identifying and quantifying various types of PEAs are critical in improving visual quality. In this paper, we investigate the influence of four spatial PEAs (i.e. blurring, blocking, bleeding, and ringing) and two temporal PEAs (i.e. flickering and floating) on video quality. For spatial artifacts, we propose a visual saliency model with a low computational cost and higher consistency with human visual perception. In terms of temporal artifacts, self-attention based TimeSFormer is improved to detect temporal artifacts. Based on the six types of PEAs, a quality metric called Saliency-Aware Spatio-Temporal Artifacts Measurement (SSTAM) is proposed. Experimental results demonstrate that the proposed method outperforms state-of-the-art metrics. We believe that SSTAM will be beneficial for optimizing video coding techniques.
translated by 谷歌翻译
We propose a distributionally robust return-risk model for Markov decision processes (MDPs) under risk and reward ambiguity. The proposed model optimizes the weighted average of mean and percentile performances, and it covers the distributionally robust MDPs and the distributionally robust chance-constrained MDPs (both under reward ambiguity) as special cases. By considering that the unknown reward distribution lies in a Wasserstein ambiguity set, we derive the tractable reformulation for our model. In particular, we show that that the return-risk model can also account for risk from uncertain transition kernel when one only seeks deterministic policies, and that a distributionally robust MDP under the percentile criterion can be reformulated as its nominal counterpart at an adjusted risk level. A scalable first-order algorithm is designed to solve large-scale problems, and we demonstrate the advantages of our proposed model and algorithm through numerical experiments.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译